sábado, 24 de junio de 2017

MATEMATICAS(OPERACIONES CON FUNCIONES)

  
OPERACIONES CON FUNCIONES

Suma de funciones
Sean f  y g dos funciones reales de variable real definidas en un mismo intervalo. Se llama suma de ambas funciones, y se representa por f + g, a la función definida por
 
                                         
 
Resta de funciones
Del mismo modo que se ha definido la suma de funciones, se define la resta de dos funciones reales de variable real f y g, como la función
 
                                         
 
Para que esto sea posible es necesario que f y g estén definidas en un mismo intervalo.
 
Producto de funciones
Sean f y g dos funciones reales de variable real, y definidas en un mismo intervalo. Se llama función producto de f y g a la función definida por
 
                                         
 
Cociente de funciones
Dadas dos funciones reales de variable real, f y g, y definidas en un mismo intervalo, se llama función cociente de f y g a la función definida por
 
                                               
 
(La función f/g está definida en todos los puntos en los que la función g no se anula.)
Producto de un número por una función
Dado un número real a y una función f, el producto del número por la función es la función definida por
 
                                            
Ejercicio:
 Sean las funciones f(x) = 3x + 1, y g(x) = 2x - 4.
 
Definir la función f + g y calcular las imágenes de los números 2, -3 y 1/5.
 
Resolución:
 
· La función f + g se define como
(f + g) (x) = f(x) + g(x) = x + 1 + 2x - 4 = 5x - 3.
 
· (f + g) (2) = 5 · 2 - 3 = 7
(f + g) (-3) = 5(-3) - 3 = -18
(f + g) (1/5) = 5 · 1/5 - 3 = -2
 
Obsérvese que si se calculan las imágenes de f y g por separado y se suman, el resultado es el mismo.
 
Por ejemplo, para la imagen del 2,
                                                      
 

http://www.sectormatematica.cl/contenidos/funoper.htm
 
 

No hay comentarios:

Publicar un comentario